If sum of the coefficient of the first, second and third terms of the expansion of ${\left( {{x^2} + \frac{1}{x}} \right)^m}$ is $46$, then the coefficient of the term that doesnot contain $x$ is :-

  • A

    $84$

  • B

    $92$

  • C

    $98$

  • D

    $106$

Similar Questions

In the expansion of ${\left( {x + \frac{2}{{{x^2}}}} \right)^{15}}$, the term independent of $x$ is

If the coefficients of $x^{7}$ in $\left(x^{2}+\frac{1}{b x}\right)^{11}$ and $x^{-7}$ in $\left(x-\frac{1}{b x^{2}}\right)^{11}, b \neq 0$, are equal, then the value of $b$ is equal to:

  • [JEE MAIN 2021]

Coefficient of $x$ in the expansion of ${\left( {{x^2} + \frac{a}{x}} \right)^5}$ is

The value of $x$ in the expression ${[x + {x^{{{\log }_{10}}}}^{(x)}]^5}$, if the third term in the expansion is $10,00,000$

Let for the $9^{\text {th }}$ term in the binomial expansion of $(3+6 x)^{n}$, in the increasing powers of $6 x$, to be the greatest for $x=\frac{3}{2}$, the least value of $n$ is $n_{0}$. If $k$ is the ratio of the coefficient of $x ^{6}$ to the coefficient of $x ^{3}$, then $k + n _{0}$ is equal to.

  • [JEE MAIN 2022]